Abstract
AbstractEndocytosis of transmembrane receptors initiates via molecular interactions between the activated receptor and the endocytic machinery. A specific group of receptors, including the β1-adrenergic receptor (β1-AR), is internalized through a non-clathrin pathway known as Fast Endophilin Mediated Endocytosis (FEME). A key question is: how does the endocytic machinery assemble and how is it modulated by activated receptors during FEME. Here we show that endophilin, a major regulator of FEME, undergoes a phase transition into liquid-like condensates, which facilitates the formation of multi-protein assemblies by enabling the phase partitioning of endophilin binding proteins. The phase transition can be triggered by specific multivalent binding partners of endophilin in the FEME pathway such as the third intracellular loop (TIL) of the β1-AR, and the proline-rich-motifs of lamellipodin (LPD-PRMs). Other endocytic accessory proteins can either partition into, or target interfacial regions of, these condensate droplets. On the membrane, TIL promotes protein clustering in the presence of endophilin and LPD-PRMs. Our results demonstrate how the multivalent interactions between endophilin, LPD-PRMs and TIL regulate protein assembly formation on the membrane, providing mechanistic insights into the priming and initiation steps of FEME.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献