Multimodal lesion network mapping to predict sensorimotor behavior in stroke patients

Author:

Jimenez-Marin AntonioORCID,Bruyn Nele De,Gooijers Jolien,Llera Alberto,Meyer Sarah,Alaerts Kaat,Verheyden Geert,Swinnen Stephan P.,Cortes Jesus M.ORCID

Abstract

AbstractLesion network mapping (LNM) has proved to be a successful technique to map symptoms to brain networks after acquired brain injury. Beyond the characteristics of a lesion, such as its etiology, size or location, LNM has shown that common symptoms in patients after injury may reflect the effects of their lesions on the same circuits, thereby linking symptoms to specific brain networks. Here, we extend LNM to its multimodal form, using a combination of functional and structural connectivity maps drawn from data from 1000 healthy participants in the Human Connectome Project. We applied the multimodal LNM to a cohort of 54 stroke patients with the aim of predicting sensorimotor behavior, as assessed through a combination of motor and sensory tests. Test scores were predicted using a Canonical Correlation Analysis with multimodal brain maps as independent variables, and cross-validation strategies were employed to overcome overfitting. The results obtained led us to draw three conclusions. First, the multimodal analysis reveals how functional connectivity maps contribute more than structural connectivity maps in the optimal prediction of sensorimotor behavior. Second, the maximal association solution between the behavioral outcome and multimodal lesion connectivity maps suggests an equal contribution of sensory and motor coefficients, in contrast to the unimodal analyses where the sensory contribution dominates in both structural and functional maps. Finally, when looking at each modality individually, the performance of the structural connectivity maps strongly depends on whether sensorimotor performance was corrected for lesion size, thereby eliminating the effect of larger lesions that produce more severe sensorimotor dysfunction. By contrast, the maps of functional connectivity performed similarly irrespective of any correction for lesion size. Overall, these results support the extension of LNM to its multimodal form, highlighting the synergistic and additive nature of different types of imaging modalities, and the influence of their corresponding brain networks on behavioral performance after acquired brain injury.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3