Abstract
AbstractModels developed using Nanopore direct RNA sequencing data from in vitro synthetic RNA with all adenosine replaced by N6-methyladenosine (m6A), are likely distorted due to superimposed signals from saturated m6A residues. Here, we develop a neural network, DENA, for m6A quantification using the sequencing data of in vivo transcripts from Arabidopsis. DENA identifies 90% of miCLIP-detected m6A sites in Arabidopsis, and obtains modification rates in human consistent to those found by SCARLET, demonstrating its robustness across species. We sequence the transcriptome of two additional m6A-deficient Arabidopsis, mtb and fip37-4, using Nanopore and evaluate their single-nucleotide m6A profiles using DENA.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献