Protein folding stabilities are a major determinant of oxidation rates for buried methionine residues

Author:

Walker Ethan J.,Bettinger John Q.,Welle Kevin A.,Hryhorenko Jennifer R.,Molina Vargas Adrian M.,O’Connell Mitchell R.,Ghaemmaghami SinaORCID

Abstract

AbstractThe oxidation of protein-bound methionines to form methionine sulfoxides has a broad range of biological ramifications, making it important to delineate factors that influence methionine oxidation rates within a protein. This is especially important for biopharmaceuticals, where oxidation can lead to deactivation and degradation. Previously, neighboring residue effects and solvent accessibility (SA) have been shown to impact the susceptibility of methionine residues to oxidation. In this study, we provide proteome-wide evidence that oxidation rates of buried methionine residues are also strongly influenced by the thermodynamic folding stability of proteins. We surveyed the E. coli proteome using several proteomic methodologies and globally measured oxidation rates of methionines in the presence and absence of tertiary structure, as well as folding stabilities of methionine containing domains. The data indicate that buried methionines have a wide range of protection factors against oxidation which correlate strongly with folding stabilities. Concordantly, we show that in comparison to E. coli, the proteome of the thermophile T. thermophilus is significantly more stable and thus more resistant to methionine oxidation. These results indicate that oxidation rates of buried methionines from the native state of proteins can be used as a metric of folding stability. To demonstrate the utility of this correlation, we used native methionine oxidation rates to survey the folding stabilities of E. coli and T. thermophilus proteomes at various temperatures and suggest a model that relates the temperature dependence of the folding stabilities of these two species to their optimal growth temperatures.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3