Brain regulatory program predates central nervous system evolution

Author:

Faltine-Gonzalez Dylan,Havrilak JamieORCID,Layden Michael JORCID

Abstract

AbstractUnderstanding if bilaterian centralized nervous systems (CNS) evolved once or multiple times has been debated for over a century. Recent efforts determined that the nerve chords found in bilaterian CNSs likely evolved independently, but the origin(s) of brains remains debatable. Developing brains are regionalized by stripes of gene expression along the anteroposterior axis. Gene homologs are expressed in the same relative order in disparate species, which has been interpreted as evidence for homology. However, regionalization programs resemble anteroposterior axial patterning programs, which supports an alternative model by which conserved expression in brains arose convergently through the independent co-option of deeply conserved axial patterning programs. To begin resolving these hypotheses, we sought to determine when the neurogenic role for axial programs evolved. Here we show that the nerve net in the cnidarian Nematostella vectensis and bilaterian brain are regionalized by the same molecular programs, which indicates nervous system regionalization predates the emergence of bilaterians and CNSs altogether. This argues that shared regionalization mechanisms are insufficient to support the homology of brains and supports the notion that axial programs were able to be co-opted multiple times during evolution of brains.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3