Recurrence of cancer cell states across diverse tumors and their interactions with the microenvironment

Author:

Barkley DaliaORCID,Moncada ReubenORCID,Pour MaayanORCID,Liberman Deborah A.ORCID,Dryg IanORCID,Werba GregorORCID,Wang Wei,Baron MaayanORCID,Rao Anjali,Xia BoORCID,França Gustavo S.,Weil Alejandro,Delair Deborah F.,Hajdu CristinaORCID,Lund Amanda W.,Osman ImanORCID,Yanai ItaiORCID

Abstract

ABSTRACTWhile genetic tumor heterogeneity has long been recognized, recent work has revealed significant variation among cancer cells at the epigenetic and transcriptional levels. Profiling tumors at the single-cell level in individual cancer types has shown that transcriptional heterogeneity is organized into cancer cell states, implying that diverse cell states may represent stable and functional units with complementary roles in tumor maintenance and progression. However, it remains unclear to what extent these states span tumor types, constituting general features of cancer. Furthermore, the role of cancer cell states in tumor progression and their specific interactions with cells of the tumor microenvironment remain to be elucidated. Here, we perform a pan-cancer single-cell RNA-Seq analysis across 15 cancer types and identify a catalog of 16 gene modules whose expression defines recurrent cancer cell states, including ‘stress’, ‘interferon response’, ‘epithelial-mesenchymal transition’, ‘metal response’, ‘basal’ and ‘ciliated’. Using mouse models, we find that induction of the interferon response module varies by tumor location and is diminished upon elimination of lymphocytes. Moreover, spatial transcriptomic analysis further links the interferon response in cancer cells to T cells and macrophages in the tumor microenvironment. Our work provides a framework for studying how cancer cell states interact with the tumor microenvironment to form organized systems capable of immune evasion, drug resistance, and metastasis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3