Earbox, an open tool for high-throughput measurement of the spatial organization of maize ears and inference of novel traits

Author:

Oury V.ORCID,Leroux T.ORCID,Turc O.ORCID,Chapuis R.ORCID,Palaffre C.ORCID,Tardieu F.ORCID,Prado S. AlvarezORCID,Welcker C.ORCID,Lacube S.ORCID

Abstract

AbstractBackgroundCharacterizing plant genetic resources and their response to the environment through accurate measurement of relevant traits is crucial to genetics and breeding. The spatial organization of the maize ear provides insights into the response of grain yield to environmental conditions. Current automated methods for phenotyping the maize ear do not capture these spatial features.ResultsWe developed EARBOX, a low-cost, open-source system for automated phenotyping of maize ears. EARBOX integrates open-source technologies for both software and hardware that facilitate its deployment and improvement for specific research questions. The imaging platform consists of a customized box in which ears are repeatedly imaged as they rotate via motorized rollers. With deep learning based on convolutional neural networks, the image analysis algorithm uses a two-step procedure: ear-specific grain masks are first created and subsequently used to extract a range of trait data per ear, including ear shape and dimensions, the number of grains and their spatial organisation, and the distribution of grain dimensions along the ear. The reliability of each trait was validated against ground-truth data from manual measurements. Moreover, EARBOX derives novel traits, inaccessible through conventional methods, especially the distribution of grain dimensions along grain cohorts, relevant for ear morphogenesis, and the distribution of abortion frequency along the ear, relevant for plant response to stress, especially soil water deficit.ConclusionsThe proposed system provides robust and accurate measurements of maize ear traits including spatial features. Future developments include grain type and colour categorization. This method opens avenues for high-throughput genetic or functional studies in the context of plant adaptation to a changing environment.

Publisher

Cold Spring Harbor Laboratory

Reference58 articles.

1. The Genetic Architecture of Maize (Zea mays L.) Kernel Weight Determination;G3: Genes|Genomes|Genetics,2014

2. Predicting maize kernel number using QTL information;Field Crops Research,2015

3. Arvalis. (2018). KMScan Documentation. https://kmscan.fr/index.php/page-d-exemple/, last consulted 20 Dec 2021

4. Low-Cost Automated Vectors and Modular Environmental Sensors for Plant Phenotyping;Sensors,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3