Compromised CDK12 activity causes dependency on the non-essential spliceosome components

Author:

Pallasaho Satu,Gondane AishwaryaORCID,Duveau Damien,Thomas Craig,Loda Massimo,Itkonen Harri MORCID

Abstract

AbstractProstate cancer (PC) is the most common cancer in men and after development of the castration-resistant PC (CRPC), there are no curative treatment options. Inactivating mutations in cyclin-dependent kinase 12 (CDK12) define an aggressive sub-type of CRPC. We hypothesized that compromised CDK12 activity leads to significant rewiring of the CRPC cells, and that this rewiring results in actionable synthetic lethal interactions.MethodsWe used combinatorial lethal screening, ChIP-seq data, RNA-seq data, global alternative splicing analysis, and comprehensive mass spectrometry (MS) profiling to understand how the compromised CDK12 activity rewires the CRPC cells. In addition, we used DepMap-, PC- and CRPC-datasets as a strategy to identify factors that are selectively required by the CDK12-mutant cells.ResultsWe show that inhibition of O-GlcNAc transferase (OGT) and CDK12 induces cancer cell-selective growth-defect. OGT catalyzes all nucleocytoplasmic O-GlcNAcylation, and we use unbiased MS-profiling to show that the short-term CDK12 inhibition induces hyper-O-GlcNAcylation of the spliceosome-machinery in PC and CRPC cells. Integration of DepMap- and a small scale-drug screen data reveled that depletion of CDK12 activity causes addiction to non-essential spliceosome components (CLK1/4 and SRPK1). CDK12-mutant tumors overexpress CLK1/4 and SRPK1. Finally, we show that the genomes of the CDK12-mutant tumors have lower DNA methylation, and that CDK12 inhibition induces the expression of the genes marked by DNA methylation.ConclusionsCompromised CDK12 activity rewires DNA methylation, transcription and splicing, and this rewiring renders the affected cells addicted on the non-essential spliceosome components. We propose that inactivation of CDK12 is a biomarker for sensitivity against inhibitors of the non-essential spliceosome components just entering the clinical trials.Abstract Figure

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3