HLAncPred: A method for predicting promiscuous non-classical HLA binding sites

Author:

Dhall Anjali,Patiyal Sumeet,Raghava Gajendra P. S.ORCID

Abstract

AbstractIn the last two decades, ample of methods have been developed to predict the classical HLA binders in an antigen. In contrast, limited attempts have been made to develop methods for predicting binders for non-classical HLA; due to the scarcity of sufficient experimental data and lack of community interest. Of Note, non-classical HLA plays a crucial immunomodulatory role and regulates various immune responses. Recent studies revealed that non-classical HLA (HLA-E & HLA-G) based immunotherapies have many advantages over classical HLA based-immunotherapy, particularly against COVID-19. In order to facilitate the scientific community, we have developed an artificial intelligence-based method for predicting binders of non-classical HLA alleles (HLA-G and HLA-E). All the models were trained and tested on experimentally validated data obtained from the recent release of IEDB. The machine learning based-models achieved more than 0.98 AUC for HLA-G alleles on validation or independent dataset. Similarly, our models achieved the highest AUC of 0.96 and 0.88 on the validation dataset for HLA-E*01:01, HLA-E*01:03, respectively. We have summarized the models developed in the past for non-classical HLA binders and compared with the models developed in this study. Moreover, we have also predicted the non-classical HLA binders in the spike protein of different variants of virus causing COVID-19 including omicron (B.1.1.529) to facilitate the community. One of the major challenges in the field of immunotherapy is to identify the promiscuous binders or antigenic regions that can bind to a large number of HLA alleles. In order to predict the promiscuous binders for the non-classical HLA alleles, we developed a web server HLAncPred (https://webs.iiitd.edu.in/raghava/hlancpred), and a standalone package.Key PointsNon-classical HLAs play immunomodulatory roles in the immune system.HLA-E restricted T-cell therapy may reduce COVID-19 associated cytokine storm.In silico models developed for predicting binders for HLA-G and HLA-E.Identification of non-classical HLA binders in strains of coronavirusA webserver for predicting promiscuous binders for non-classical HLA allelesAuthor’s BiographyAnjali Dhall is currently working as Ph.D. in Bioinformatics from Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India.Sumeet Patiyal is currently working as Ph.D. in Bioinformatics from Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India.Gajendra P. S. Raghava is currently working as Professor and Head of Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3