Abstract
AbstractDensity dependence is a fundamental concept for fish population dynamics. Although density-dependent growth and maturity among older juveniles and adults is important for regulating fish population size and for fisheries management, the mechanism of density dependence for marine fishes remains unclear. Here, we examined changes in Japanese sardine growth with increasing abundance beginning in the 2010s and how the current pattern of density-dependent growth differs from that of a previous stock-increase period from the 1970s to early 1980s. During the current period of increasing abundance, mean standard length has already dropped to the lowest level yet observed and growth has declined more sharply with increased abundance than in the 1970s and 1980s. Mesozooplankton biomass in July in the summer feeding grounds was also lower during the current period. Therefore, our results suggest that summer food availability in the western North Pacific controls the strength of density-dependent growth. A lower carrying capacity for Japanese sardine could account for the stronger density dependence of growth observed in the 2010s; this indicates that future Japanese sardine abundance might not increase as much as in the 1980s unless food availability improves.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献