Influence of sequencing depth on the fidelity and sensitivity of 1%-5% low-frequency mutation detection and recommendation for standardization of sequencing depth

Author:

Liu Zhe,Qiu Weijin,Fu Shujin,Zhao Xia,Xia Jun,Geng Chunyu,Yu Youqian,Li Ziling,Li Mingzhu,Jiang Hui,Chen Fang

Abstract

AbstractSequencing depth has always played an important role in the accurate detection of low-frequency mutations. The increase of sequencing depth and the reasonable setting of threshold can maximize the probability of true positive mutation, or sensitivity. Here, we found that when the threshold was set as a fixed number of positive mutated reads, the probability of both true and false-positive mutations increased with depth. However, When the number of positive mutated reads increased in an equal proportion with depth (the threshold was transformed from a fixed number to a fixed percentage of mutated reads), the true positive probability still increased while false positive probability decreased. Through binomial distribution simulation and experimental test, it is found that the “fidelity” of detected-VAFs is the cause of this phenomenon. Firstly, we used the binomial distribution to construct a model that can easily calculate the relationship between sequencing depth and probability of true positive (or false positive), which can standardize the minimum sequencing depth for different low-frequency mutation detection. Then, the effect of sequencing depth on the fidelity of NA12878 with 3% mutation frequency and circulating tumor DNA (ctDNA of 1%, 3% and 5%) showed that the increase of sequencing depth reduced the fluctuation range of detected-VAFs around the expected VAFs, that is, the fidelity was improved. Finally, based on our experiment result, the consistency of single-nucleotide variants (SNVs) between paired FF and FFPE samples of mice increased with increasing depth, suggesting that increasing depth can improve the precision and sensitivity of low-frequency mutations.HighlightsThe normalized relationship between sequencing depth and the probability of true positive mutation (sensitivity) is established based on binomial distribution.The probability of true positive increases and the probability of false positive decreases when the number of positive mutated reads increases (threshold) in an equal proportion with depth.Detected-VAFs fluctuates regularly around expected-VAFs. The amplitude of detected-VAFs fluctuation decreases with sequencing depth and the “fidelity” increases.The increase of “fidelity” leads to a higher degree of differentiation between true and false positive mutations, which ultimately increases the true positive probability and decreases the false positive probability.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3