A novel Phytophthora sojae effector PsFYVE1 modulates transcription and alternative splicing of immunity related genes by targeting host RZ-1A protein

Author:

Lu Xinyu,Yang Zitong,Song Wen,Si Jierui,Yin Zhiyuan,Jing Maofeng,Shen Danyu,Dou DaolongORCID

Abstract

AbstractOomycete pathogens secrete many effectors to manipulate plant immunity and promote infection. However, relatively few effector types have been well characterized. In this study, members of a FYVE domain-containing protein family that is highly expanded in oomycetes were systematically identified, and one secreted protein, PsFYVE1, was selected for further study. PsFYVE1 enhanced Phytophthora infection in Nicotiana benthamiana and was necessary for P. sojae virulence. The FYVE domain of PsFYVE1 had PI3P-binding activity that depended on four conservative amino acid residues. Furthermore, PsFYVE1 targeted RNA-binding proteins RZ-1A/1B/1C in N. benthamiana and soybean, and silencing of NbRZ-1A/1B/1C genes attenuates plant immunity. NbRZ-1A was associated with spliceosome that included three important components, NbGRP7, NbGRP8, and NbU1-70K. Notably, PsFYVE1 could disrupt NbRZ-1A–NbGRP7 interaction. RNA-seq and subsequent experimental analysis demonstrated that PsFYVE1 and NbRZ-1A not only co-regulated transcription of NbHCT, NbEIN2, and NbSUS4 genes but also modulated pre-mRNA alternative splicing (AS) of the NbNSL1 gene, which participated in plant immunity. Collectively, these findings indicate that the FYVE domain-containing protein family includes potential new effector types and also highlight that plant pathogen effectors can regulate plant immunity related genes at both transcription and AS levels to promote disease.Author summaryMany plant pathogenic oomycetes secrete effector proteins into plants to facilitate infection. Discovering potential repertoire of novel effectors and corresponding molecular mechanisms are major themes in the study of oomycete–plant interactions. Here, we characterized a FYVE domain-containing protein (PsFYVE1) in P. sojae. PsFYVE1 carries a functional secretory signal peptide and is a virulence-essential effector for P. sojae infection. We demonstrated that PsFYVE1 interacted with a class of plant RNA-binding proteins, including soybean GmRZ-1A/1B/1C and N. benthamiana NbRZ-1A/1B/1C. Silencing of NbRZ-1A/1B/1C proteins increased Phytophthora infection and suppressed plant defense. Furthermore, NbRZ-1A interacted with the spliceosome components, and PsFYVE1 disrupted association between NbRZ-1A and spliceosome component NbGRP7. We examined the global transcription and alternative splicing (AS) changes regulated by PsFYVE1 and NbRZ-1A, which indicated that PsFYVE1 and NbRZ-1A co-regulated transcription and pre-mRNA AS of immunity-related genes. Thus, this study identifies a novel virulence-related effector from P. sojae and a class of positive regulators of plant immunity, and reveals a detailed mechanism of effector-medicated transcription and AS regulation during pathogen–plant interactions.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3