Regulation of Kidney Mitochondrial Function by Caloric Restriction

Author:

Serna Julian D. C.,Amaral Andressa G.,Caldeira da Silva Camille C.,Munhoz Ana C.,Menezes-Filho Sergio L.,Kowaltowski Alicia J.ORCID

Abstract

ABSTRACTCaloric restriction (CR) prevents obesity, promotes healthy aging, and increases resilience against several pathological stimuli in laboratory rodents. At the mitochondrial level, protection promoted by CR in the brain and liver is related to higher calcium uptake rates and capacities, avoiding Ca2+-induced mitochondrial permeability transition. Dietary restriction has also been shown to increase kidney resistance against damaging stimuli such as ischemia/reperfusion, but if these effects are related to similar mitochondrial adaptations had not yet been uncovered. Here, we characterized changes in mitochondrial function in response to six months of CR in rats, measuring bioenergetic parameters, redox balance and calcium homeostasis. CR promoted an increase in mitochondrial oxygen consumption rates under non-phosphorylating and uncoupled conditions. While CR prevents mitochondrial reactive oxygen species production in many tissues, in kidney we found that mitochondrial H2O2 release was enhanced, although levels of carbonylated proteins and methionine sulfoxide were unchanged. Surprisingly, and opposite to the effects observed in brain and liver, mitochondria from CR animals are more prone to Ca2+-induced mitochondrial permeability transition. CR mitochondria also displayed higher calcium uptake rates, which were not accompanied by changes in calcium efflux rates, nor related to altered inner mitochondrial membrane potentials or the amounts of the mitochondrial calcium uniporter (MCU). Instead, increased mitochondrial calcium uptake rates in CR kidneys correlate with a loss of MICU2, an MCU modulator. Interestingly, MICU2 is also modulated by CR in liver, suggesting it has a broader diet-sensitive regulatory role controlling mitochondrial calcium homeostasis. Together, our results highlight the organ-specific bioenergetic, redox, and ionic transport effects of CR. Specifically, we describe the regulation of the expression of MICU2 and its effects on mitochondrial calcium transport as a novel and interesting aspect of the metabolic responses to dietary interventions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3