Inference of Brain States under Anesthesia with Meta Learning Based Deep Learning Models

Author:

Wang Qihang,Liu Feng,Wan Guihong,Chen Ying

Abstract

AbstractMonitoring the depth of unconsciousness during anesthesia is useful in both clinical settings and neuroscience investigations to understand brain mechanisms. Electroencephalogram (EEG) has been used as an objective means of characterizing brain altered arousal and/or cognition states induced by anesthetics in real-time. Different general anesthetics affect cerebral electrical activities in different ways. However, the performance of conventional machine learning models on EEG data is unsatisfactory due to the low Signal to Noise Ratio (SNR) in the EEG signals, especially in the office-based anesthesia EEG setting. Deep learning models have been used widely in the field of Brain Computer Interface (BCI) to perform classification and pattern recognition tasks due to their capability of good generalization and handling noises. Compared to other BCI applications, where deep learning has demonstrated encouraging results, the deep learning approach for classifying different brain consciousness states under anesthesia has been much less investigated. In this paper, we propose a new framework based on meta-learning using deep neural networks, named Anes-MetaNet, to classify brain states under anesthetics. The Anes-MetaNet is composed of Convolutional Neural Networks (CNN) to extract power spectrum features, and a time consequence model based on Long Short-Term Memory (LSTM) Networks to capture the temporal dependencies, and a meta-learning framework to handle large cross-subject variability. We used a multi-stage training paradigm to improve the performance, which is justified by visualizing the high-level feature mapping. Experiments on the office-based anesthesia EEG dataset demonstrate the effectiveness of our proposed Anes-MetaNet by comparison of existing methods.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3