Screening of Chimeric GAA Variants in a Preclinical Study of Pompe Disease Results in Candidate Vector for Hematopoietic Stem Cell Gene Therapy

Author:

Dogan Yildirim,Barese Cecilia N.,Schindler Jeffrey W.,Yoon John K.,Unnisa Zeenath,Guda Swaroopa,Jacobs Mary E.,Oborski Christine,Clarke Diana L.,Schambach Axel,Pfeifer Richard,Harper Claudia,Mason Chris,van Til Niek P.ORCID

Abstract

AbstractPompe disease is a rare genetic neuromuscular disorder caused by acid alpha-glucosidase (GAA) deficiency resulting in lysosomal glycogen accumulation and progressive myopathy. Enzyme replacement therapy (ERT) is the current standard of care, which prolongs the quality of life for Pompe patients. However, ERT has limitations due to lack of enzyme penetration into the central nervous system (CNS) and skeletal muscles, immunogenicity against the recombinant enzyme, and requires life-long biweekly infusions. In a preclinical mouse model, a clinically relevant promoter to drive lentiviral vector-mediated expression of engineered GAA in autologous hematopoietic stem and progenitor cells (HSPC) was tested with nine unique human chimeric GAA coding sequences incorporating distinct peptide tags and codon-optimization iterations. Vectors including glycosylation independent lysosomal targeting (GILT) tags resulted in effective GAA enzyme delivery into key disease tissues with enhanced reduction of glycogen, myofiber and CNS vacuolation, compared to non-tagged GAA in Gaa knockout mice, a model of Pompe disease. Genetically modified microglial cells in brains were detected at low levels, but provided robust correction. Furthermore, an aminoacid substitution in the tag added to reduced capacity to induce insulin signaling and there was no evidence of off-target effects. This study demonstrated the therapeutic potential of lentiviral HSPC gene therapy exploiting optimized GAA tagged coding sequences to reverse Pompe disease pathology in a preclinical mouse model providing a promising vector candidate for further investigation.One Sentence SummaryA candidate vector for hematopoietic stem cell gene therapy of Pompe disease.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3