Abstract
ABSTRACTBacteriophages impose a strong evolutionary pressure on microbes for the development of mechanisms of survival. Multiple new mechanisms of innate defense have been described recently, with the molecular mechanism of most of them remaining uncharacterized. Here, we show that a Class 1 DISARM (defense island system associated with restriction-modification) system from Serratia sp. provides broad protection from double-stranded DNA phages, and drives a population of single-stranded phages to extinction. We identify that protection is not abolished by deletion of individual DISARM genes and that the absence of methylase genes drmMI and drmMII does not result in autoimmunity. In addition to antiphage activity we also observe that DISARM limits conjugation, and this activity is linked to the number of methylase cognate sites in the plasmid. Overall, we show that Class 1 DISARM provides robust anti-phage and anti-plasmid protection mediated primarily by drmA and drmB, which provide resistance to invading nucleic acids using a mechanism enhanced by the recognition of unmethylated cognate sites of the two methylases drmMI and drmMII.
Publisher
Cold Spring Harbor Laboratory
Reference29 articles.
1. Bacteriophage resistance mechanisms
2. Systematic and quantitative view of the antiviral arsenal of prokaryotes
3. The biology of restriction and anti-restriction
4. Systematic discovery of antiphage defense systems in the microbial pangenome;Science,2018
5. Diverse enzymatic activities mediate antiviral immunity in prokaryotes;Science,2020
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献