Coral larvae suppress the heat stress response during the onset of symbiosis thereby decreasing their odds of survival

Author:

Kitchen Sheila A.ORCID,Jiang DuoORCID,Harii SakiORCID,Satoh NoriyukiORCID,Weis Virginia M.ORCID,Shinzato ChuyaORCID

Abstract

AbstractThe endosymbiosis between most corals and their photosynthetic dinoflagellate partners begins early in the host life history, when corals are larvae or juvenile polyps. The capacity of coral larvae to buffer climate-induced stress while in the process of symbiont acquisition could come with physiological trade-offs that alter larval behavior, development, settlement and survivorship. Here we examined the joint effects of thermal stress and symbiosis onset on colonization dynamics, survival, metamorphosis and host gene expression of Acropora digitifera larvae. We found that thermal stress decreased symbiont colonization of hosts by 50% and symbiont density by 98.5% over two weeks. Temperature and colonization also influenced larval survival and metamorphosis in an additive manner, where colonized larvae fared worse or prematurely metamorphosed more often than non-colonized larvae under thermal stress. Transcriptomic responses to colonization and thermal stress treatments were largely independent, while the interaction of these treatments revealed contrasting expression profiles of genes that function in the stress response, immunity, inflammation and cell cycle regulation. The combined treatment either canceled or lowered the magnitude of expression of heat-stress responsive genes in the presence of symbionts, revealing a physiological cost to acquiring symbionts at the larval stage with elevated temperatures. In addition, host immune suppression, a hallmark of symbiosis onset under ambient temperature, turned to immune activation under heat stress. Thus, by integrating the physical environment and biotic pressures that mediate pre-settlement event in corals, our results suggest that colonization may hinder larval survival and recruitment creating isolated, genetically similar populations under projected climate scenarios.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3