Abstract
AbstractPerforin-like proteins (PLPs) play key roles in the mechanisms associated with parasitic disease caused by apicomplexans such as Plasmodium (malaria) and Toxoplasma. The T. gondii PLP1 (TgPLP1) mediates tachyzoite egress from cells, while the five Plasmodium PLPs carry out various roles in the life cycle of the parasite and with respect to the molecular basis of disease. Here we focus on Plasmodium vivax PLP1 and PLP2 (PvPLP1 and PvPLP2) compared to TgPLP1; PvPLP1 is important for invasion of mammalian hosts by the parasite and establishment of a chronic infection, PvPLP2 is important during the symptomatic blood stage of the parasite life cycle. Determination of the crystal structure of the membrane-binding APCβ domain of PvPLP1 reveals notable differences with that of TgPLP1, which are reflected in its inability to bind lipid bilayers in the way that TgPLP1 and PvPLP2 can be shown to. Molecular dynamics simulations combined with site-directed mutagenesis and functional assays allow a dissection of the binding interactions of TgPLP1 and PvPLP2 on lipid bilayers, and reveal a similar tropism for lipids found enriched in the inner leaflet of the mammalian plasma membrane. In addition to this shared mode of membrane binding PvPLP2 displays a secondary synergistic interaction side-on from its principal bilayer interface. This study underlines the substantial differences between the biophysical properties of the APCβ domains of Apicomplexan PLPs, which reflect their significant sequence diversity. Such differences will be important factors in determining the cell targeting and membrane-binding activity of the different proteins, in their different developmental roles within parasite life cycles.
Publisher
Cold Spring Harbor Laboratory