Biology and engineering of integrative and conjugative elements: Construction and analyses of hybrid ICEs reveal element functions that affect species-specific efficiencies

Author:

Bean Emily L.ORCID,Herman CalvinORCID,Grossman Alan D.ORCID

Abstract

AbstractIntegrative and conjugative elements (ICEs) are mobile genetic elements that reside in a bacterial host chromosome and are prominent drivers of bacterial evolution. They are also powerful tools for genetic analyses and engineering. Transfer of an ICE to a new host involves many steps, including excision from the chromosome, DNA processing and replication, transfer across the envelope of the donor and recipient, processing of the DNA, and eventual integration into the chromosome of the new host (now a stable transconjugant). Interactions between an ICE and its hosts throughout the life cycle likely influence the efficiencies of acquisition by new hosts. Here, we investigated how different functional modules of two ICEs, Tn916 and ICEBs1, affect the transfer efficiencies into different host bacteria. We constructed hybrid elements that utilize the high-efficiency regulatory and excision modules of ICEBs1 and the conjugation genes of Tn916. These elements produced more transconjugants than Tn916, likely due to increased excision frequencies. We also found that several Tn916 and ICEBs1 components can substitute for one other. Using B. subtilis donors and three Enterococcus species as recipients, we found that different hybrid elements were more readily acquired by some species than others, demonstrating species-specific interactions in steps of the ICE life cycle. This work demonstrates that hybrid elements utilizing the efficient regulatory functions of ICEBs1 can be built to enable efficient transfer into and engineering of a variety of other species.Author summary (non-technical)Horizontal gene transfer helps drive microbial evolution, enabling bacteria to rapidly acquire new genes and traits. Integrative and conjugative elements (ICEs) are mobile genetic elements that reside in a bacterial host chromosome and are prominent drivers of horizontal gene transfer. They are also powerful tools for genetic analyses and engineering. Some ICEs carry genes that confer obvious properties to host bacteria, including antibiotic resistances, symbiosis, and pathogenesis. When activated, an ICE-encoded machine is made that can transfer the element to other cells, where it then integrates into the chromosome of the new host. Specific ICEs transfer more effectively into some bacterial species compared to others, yet little is known about the determinants of the efficiencies and specificity of acquisition by different bacterial species. We made and utilized hybrid ICEs, composed of parts of two different elements, to investigate determinants of transfer efficiencies. Our findings demonstrate that there are species-specific interactions that help determine efficiencies of stable acquisition, and that this explains, in part, the efficiencies of different ICEs. These hybrid elements are also useful in genetic engineering and synthetic biology to move genes and pathways into different bacterial species with greater efficiencies than can be achieved with naturally occurring ICEs.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3