Abstract
AbstractCopper is a critical element for eukaryotic life, involved in numerous cellular functions and in redox balance but it can be toxic in excess. Therefore, tight regulation of copper acquisition and homeostasis is essential for cell physiology and survival. Here, we identified a unique mechanism for cell survival involving the regulation of copper homeostasis by an endogenous retroviral (ERV) envelope glycoprotein called Refrex1. We show that extracellular copper sensing by cells increases Refrex1 expression, which in turn regulates copper acquisition through interaction with the main copper transporter SLC31A1/CTR1. Downmodulation of Refrex1 resulted in intracellular copper accumulation leading to ROS production and subsequent apoptosis, which could be reverted by copper chelator treatment. Our results demonstrate that Refrex1 has been co-opted for its ability to regulate copper entry through CTR1 interaction in order to limit copper excess for a proper redox balance, and suggests that other ERV may have similar metabolic functions among vertebrates.
Publisher
Cold Spring Harbor Laboratory