Mitochondrial fission dysfunction alleviates heterokaryon incompatibility-triggered cell death in the industrial filamentous fungus Aspergillus oryzae

Author:

Lu Chan,Katayama Takuya,Mori Noriko,Saito Ryota,Iwashita Kazuhiro,Maruyama Jun-ichi

Abstract

ABSTRACTIn filamentous fungi, cell-to-cell recognition is a fundamental requirement for the formation, development, and maintenance of complex hyphal networks. Basically, self/compatible individuals within the fungal species are capable of fusing together, a step important for crossbreeding, which results in the formation of viable vegetative heterokaryons. Conversely, the fusion of incompatible individuals does not result in the formation of viable hyphal networks, but it often leads to growth inhibition or cell death. Even though a number of studies have been conducted to investigate such incompatibility, the understanding of the associated molecular mechanism is still limited, and this restricts the possibility of crossbreeding incompatible individuals. Therefore, in this study, the characteristics of compatibility/incompatibility in the industrial filamentous fungus, Aspergillus oryzae, were comprehensively investigated. Protoplast fusion and co-culture assays indicated the existence of a correlation between strain phylogeny and compatibility/incompatibility features. Time-course fluorescence observations were employed to investigate the types of incompatible responses that are induced at different cellular levels upon incompatible cell fusion, which eventually lead to cell death. Propidium iodide-indicated cell death, ROS accumulation, and mitochondrial fragmentation were identified as the major responses, with mitochondrial fragmentation showing the most significant subcellular change immediately after incompatible cell fusion. Furthermore, the deletions of mitochondrial fission-related genes Aofis1 and Aodnm1 in incompatible pairing alleviated cell death, indicating that mitochondrial fission is an important mechanism by which incompatibility-triggered cell death occurs. Therefore, this study provides new insights about heterokaryon incompatibility.IMPORTANCEFor a long time, it was believed that as an asexual fungus, A. oryzae does not exhibit any sexual cycle. However, the fungus has two mating types, indicating the potential for sexual reproduction besides a known parasexual cycle. Therefore, given that viable heterokaryon formation following cell fusion is an important step required for genetic crossing, we explored the mechanism of incompatibility, which restricts the possibility of cell fusion in A. oryzae. Protoplast fusion and co-culture assays led to the identification of various vegetative compatible groups. Mitochondrial fragmentation was found to be the most significant incompatible cellular response that occurred in organelles during incompatible pairing, while the deletion of mitochondrial fission-related genes was identified as a strategy used to alleviate incompatibility-triggered cell death. Thus, this study revealed a novel mechanism by which mitochondrial fission regulates incompatible responses.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3