Abstract
ABSTRACTComplex bulk samples of invertebrates from biodiversity surveys present a great challenge for taxonomic identification, especially if obtained from unexplored ecosystems. High-throughput imaging combined with machine learning for rapid classification could overcome this bottleneck. Developing such procedures requires that taxonomic labels from an existing source data set are used for model training and prediction of an unknown target sample. Yet the feasibility of transfer learning for the classification of unknown samples remains to be tested. Here, we assess the efficiency of deep learning and domain transfer algorithms for family-level classification of below-ground bulk samples of Coleoptera from understudied forests of Cyprus. We trained neural network models with images from local surveys versus global databases of above-ground samples from tropical forests and evaluated how prediction accuracy was affected by: (a) the quality and resolution of images, (b) the size and complexity of the training set and (c) the transferability of identifications across very disparate source-target pairs that do not share any species or genera. Within-dataset classification accuracy reached 98% and depended on the number and quality of training images and on dataset complexity. The accuracy of between-datasets predictions was reduced to a maximum of 82% and depended greatly on the standardisation of the imaging procedure. When the source and target images were of similar quality and resolution, albeit from different faunas, the reduction of accuracy was minimal. Application of algorithms for domain adaptation significantly improved the prediction performance of models trained by non-standardised, low-quality images. Our findings demonstrate that existing databases can be used to train models and successfully classify images from unexplored biota, when the imaging conditions and classification algorithms are carefully considered. Also, our results provide guidelines for data acquisition and algorithmic development for high-throughput image-based biodiversity surveys.
Publisher
Cold Spring Harbor Laboratory