THE RHIZOSPHERE BACTERIAL COMMUNITIES DIFFER AMONG DOMESTICATED MAIZE LANDRACES – AN EXPERIMENTAL CONFIRMATION

Author:

Lund Mads,Rasmussen Jacob Agerbo,Ramos-Madrigal Jazmín,Gilbert M. Thomas P.,Barnes Christopher James

Abstract

AbstractThe plant-associated microbiome has been shown to vary considerably between species and across environmental gradients. The effects of genomic variation on the microbiome within single species are less clearly understood, with results often confounded by the larger effects of climatic and edaphic variation.In this study, the effect of genomic variation on the rhizosphere bacterial communities of maize was investigated by comparing different genotypes grown within controlled environments. Rhizosphere bacterial communities were profiled by metabarcoding the universal bacterial 16S rRNA v3-v4 region. Initially, plants from the inbred B73 line and the Ancho - More 10 landrace were grown for 12- weeks and compared. The experiment was then repeated with an additional four Mexican landraces (Apachito - Chih 172, Tehua - Chis 204, Serrano - Pueb 180 and Hairnoso de Ocho) that were grown alongside additional B73 and Ancho – More 10 genotypes.In both experiments there were significant genotypic differences in the rhizosphere bacteria. Additionally, the bacterial communities were significantly correlated with genomic distance between genotypes, with the more closely related landraces being more similar in rhizosphere bacterial communities.Despite limited sampling numbers, here we confirm that genomic variation in maize landraces is associated with differences in the rhizosphere bacterial communities. Further studies that go beyond correlations to identify the mechanisms that determine the genotypic variation of the rhizosphere microbiome are required.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3