Neural signature of everyday function in older adults at-risk of cognitive impairment

Author:

De Sanctis Pierfilippo,Wagner Johanna,Molholm Sophie,Foxe John J.ORCID,Blumen Helena M.,Horsthuis Douwe J.

Abstract

AbstractAssessment of everyday activities are central to the diagnosis of pre-dementia and dementia. Yet, little is known about the brain substrates and processes that contribute to everyday functional impairment, particularly during early stages of cognitive decline. We investigated everyday function using a complex gait task in normal older adults stratified by risk of cognitive impairment. We applied a novel EEG approach, which combines electroencephalographic with 3D-body tracking technology to measure brain-gait dynamics with millisecond precision while participants are in motion. Twenty-six participants (mean age = 74.9 years) with cognitive and everyday functional profiles within the normal range for their age and sex were ranked for risk of cognitive impairment. We used the Montreal Cognitive Assessment battery, a global index of cognition with a range from 0 to 30, to classify individuals as being at higher (22-26) and lower risk (27+). Individuals walking on a treadmill were exposed to visual perturbation designed to destabilize gait. Assuming that brain changes precede behavioral decline, we predicted that older adults increase step width to gain stability, yet the underlying neural signatures would be different for lower versus higher risk individuals. When pooling across risk groups, we found that step width increased and fronto-parietal activation shifted from transient, during swing phases, to sustained across the gait cycle during visually perturbed input. As predicted, step width increased in both groups but underlying neural signatures were different. Fronto-medial theta (3-7Hz) power of gait-related brain oscillations were increased in higher risk individuals during both perturbed and unperturbed inputs. On the other hand, left central gyri beta (13-28Hz) power was decreased in lower risk individuals, specifically during visually perturbed input. Finally, relating MoCA scores to spectral power pooled across fronto-parietal regions, we found associations between increased theta power and worse MoCA scores and between decreased beta power and better MoCA scores.Able-bodied older adults at-risk of cognitive impairment are characterized by unique neural signatures of mobility. Stronger reliance on frontomedial theta activation in at-risk individuals may reflect higher-order compensatory responses for deterioration of basic sensorimotor processes. Region and spectral-specific signatures of mobility may provide brain targets for early intervention against everyday functional decline.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3