Benchmarking GE-BOLD, SE-BOLD, and SS-SI-VASO sequences for depth-dependent separation of feedforward and feedback signals in high-field MRI

Author:

Iamshchinina Polina,Haenelt Daniel,Trampel Robert,Weiskopf Nikolaus,Kaiser Daniel,Cichy Radoslaw M.

Abstract

AbstractRecent advances in high-field fMRI have allowed differentiating feedforward and feedback information in the grey matter of the human brain. For continued progress in this endeavor, it is critical to understand how MRI data acquisition parameters impact the read-out of information from laminar response profiles. Here, we benchmarked three different MR-sequences at 7T - gradient-echo (GE), spin-echo (SE) and vascular space occupancy imaging (VASO) - in differentiating feedforward and feedback signals in human early visual cortex (V1). The experiment (N=4) consisted of two complementary tasks: a perception task that predominantly evokes feedforward signals and a working memory task that relies on feedback signals. In the perception task, participants saw flickering oriented gratings while detecting orthogonal color-changes. In the working memory task, participants memorized the precise orientation of a grating. We used multivariate pattern analysis to read out the perceived (feedforward) and memorized (feedback) grating orientation from neural signals across cortical depth. Analyses across all the MR-sequences revealed perception signals predominantly in the middle cortical compartment of area V1 and working memory signals in the deep compartment. Despite an overall consistency across sequences, SE-EPI was the only sequence where both feedforward and feedback information were differently pronounced across cortical depth in a statistically robust way. We therefore suggest that in the context of a typical cognitive neuroscience experiment as the one benchmarked here, SE-EPI may provide a favorable trade-off between spatial specificity and signal sensitivity.HighlightsHere, we benchmarked three sequences at high-field fMRI -GE-BOLD, SE-BOLD and VASO - in differentiating feedforward and feedback signals across grey matter depth of area V1. We show that:All the MR-sequences revealed the feedforward and feedback signals at the middle and deep cortical bins, respectively.Such correspondence across the sequences indicates that widely used GE-BOLD is a suitable method for the exploration of signals in cortical depth.Only SE-BOLD yielded statistically reliable differences between the cortical bins carry- ing feedforward and feedback signals.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3