A novel approach to concentrate human and animal viruses from wastewater using receptors-conjugated magnetic beads

Author:

Oh ChamteutORCID,Kim Kyukyoung,Araud Elbashir,Wang Leyi,Shisler Joanna L.,Nguyen Thanh H.

Abstract

AbstractViruses are present at low concentrations in wastewater, and therefore an effective concentration of virus particles is necessary for accurate wastewater-based epidemiology (WBE). We designed a novel approach to concentrate human and animal viruses from wastewater using porcine gastric mucin-conjugated magnetic beads (PGM-MBs). We systematically evaluated the performances of the PGM-MBs method (sensitivity, specificity, and robustness to environmental inhibitors) with six viral species including Tulane virus (a surrogate for human norovirus), rotavirus, adenovirus, porcine coronavirus (transmissible gastroenteritis virus or TGEV), and two human coronaviruses (NL63 and SARS-CoV-2) in influent wastewater and raw sewage samples. We determined the multiplication factor (the ratio of genome concentration of the concentrated over that of the initial solution) for the PGM-MBs method, which ranged from 1.3 to 64.0 depending on the viral species. Because the recovery efficiency became significantly higher when calculated based on virus titers than genome concentration, the PGM-MBs method could be an appropriate tool for assessing the risk due to wastewater contaminated with infectious enteric viruses. PCR inhibitors were not concentrated by PGM-MBs, suggesting this tool will be successful for use with environmental samples. The PGM-MBs method is cost-effective (0.43 USD/sample) and fast turnaround (3 hours from virus concentration to genome quantification), and thus this method can be implemented for high throughput facilities. Based on good performance, intrinsic characteristics of targeting the infectious virus, robustness to wastewater, and adaptability to high throughput systems, we are confident that the PGM-MBs method can be applied for successful WBE and ultimately provides valuable public health information.Graphical abstract

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3