Magnetic particle imaging of magnetotactic bacteria as living contrast agents is improved by altering magnetosome structures

Author:

Makela Ashley V.ORCID,Schott Melissa A.,Madsen Cody,Greeson Emily,Contag Christopher H.ORCID

Abstract

ABSTRACTIron nanoparticles used as imaging contrast agents can help differentiate between normal and diseased tissue, or track cell movement and localize pathologies. Magnetic particle imaging (MPI) is an imaging modality that uses the magnetic properties of iron nanoparticles to provide specific, quantitative and sensitive imaging data. MPI signals depend on the size, structure and composition of the nanoparticles; MPI-tailored nanoparticles have been developed by modifying these properties. Magnetotactic bacteria produce magnetosomes which mimic synthetic nanoparticles, and thus comprise a living contrast agent in which nanoparticle formation can be modified by mutating genes. Specifically, genes that encode proteins critical to magnetosome formation and regulation, such as mamJ which helps with filament turnover. Deletion of mamJ in Magnetospirillum gryphiswaldense, MSR-1 led to clustered magnetosomes instead of the typical linear chains. Here we examined the effects of this magnetosome structure and revealed improved MPI signal and resolution from clustered magnetosomes compared to linear chains. Bioluminescent MSR-1 with the mamJ deletion were injected intravenously into tumor-bearing and healthy mice and imaged using both in vivo bioluminescence imaging (BLI) and MPI. BLI revealed the location and viability of bacteria which was used to validate localization of MPI signals. BLI identified the viability of MSR-1 for 24 hours and MPI detected iron in the liver and in multiple tumors. Development of living contrast agents offers new opportunities for imaging and therapy by using multimodality imaging to track the location and viability of the therapy and the resulting biological effects.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3