Abstract
AbstractGenomic imprinting is an epigenetic mechanism leading to parent-of-origin dependent gene expression. So far, the precise number of imprinted genes in humans is uncertain. In this study, we leveraged genome-wide DNA methylation in whole blood measured longitudinally at 3 time points (birth, childhood and adolescence) and GWAS data in 740 Mother-Child duos from the Avon Longitudinal Study of Parents and Children (ALSPAC) to systematically identify imprinted loci. We reasoned that cis-meQTLs at genomic regions that were imprinted would show strong evidence of parent-of-origin associations with DNA methylation, enabling the detection of imprinted regions. Using this approach, we identified genome-wide significant cis-meQTLs that exhibited parent-of-origin effects (POEs) at 35 novel and 50 known imprinted regions (10−10< P <10−300). Among the novel loci, we observed signals near genes implicated in cardiovascular disease (PCSK9), and Alzheimer’s disease (CR1), amongst others. Most of the significant regions exhibited imprinting patterns consistent with uniparental expression, with the exception of twelve loci (including the IGF2, IGF1R, and IGF2R genes), where we observed a bipolar-dominance pattern. POEs were remarkably consistent across time points and were so strong at some loci that methylation levels enabled good discrimination of parental transmissions at these and surrounding genomic regions. The implication is that parental allelic transmissions could be modelled at many imprinted (and linked) loci and hence POEs detected in GWAS of unrelated individuals given a combination of genetic and methylation data. Our results indicate that modelling POEs on DNA methylation is effective to identify loci that may be affected by imprinting.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献