From word models to executable models of signaling networks using automated assembly

Author:

Gyori Benjamin MORCID,Bachman John AORCID,Subramanian KartikORCID,Muhlich Jeremy LORCID,Galescu Lucian,Sorger Peter KORCID

Abstract

AbstractWord models (natural language descriptions of molecular mechanisms) are a common currency in spoken and written communication in biomedicine but are of limited use in predicting the behavior of complex biological networks. We present an approach to building computational models directly from natural language using automated assembly. Molecular mechanisms described in simple English are read by natural language processing algorithms, converted into an intermediate representation and assembled into executable or network models. We have implemented this approach in the Integrated Network and Dynamical Reasoning Assembler (INDRA), which draws on existing natural language processing systems as well as pathway information in Pathway Commons and other online resources. We demonstrate the use of INDRA and natural language to model three biological processes of increasing scope: (i) p53 dynamics in response to DNA damage; (ii) adaptive drug resistance in BRAF-V600E mutant melanomas; and (iii) the RAS signaling pathway. The use of natural language for modeling makes routine tasks more efficient for modeling practitioners and increases the accessibility and transparency of models for the broader biology community.Standfirst textINDRA uses natural language processing systems to read descriptions of molecular mechanisms and assembles them into executable models.HighlightsINDRA decouples the curation of knowledge as word models from model implementationINDRA is connected to multiple natural language processing systems and can draw on information from curated databasesINDRA can assemble dynamical models in rule-based and reaction network formalisms, as well as Boolean networks and visualization formatsWe used INDRA to build models of p53 dynamics, resistance to targeted inhibitors of BRAF in melanoma, and the Ras signaling pathway from natural language

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3