NBK/BIK antagonizes MCL-1 and BCL-XL and activates BAK-mediated apoptosis in response to protein synthesis inhibition

Author:

Shimazu Tsutomu,Degenhardt Kurt,Nur-E-Kamal Alam,Zhang Junjie,Yoshida Takeshi,Zhang Yonglong,Mathew Robin,White Eileen,Inouye Masayori

Abstract

Ribonucleases, antibiotics, bacterial toxins, and viruses inhibit protein synthesis, which results in apoptosis in mammalian cells. How the BCL-2 family of proteins regulates apoptosis in response to the shutoff of protein synthesis is not known. Here we demonstrate that an Escherichia coli toxin, MazF, inhibited protein synthesis by cleavage of cellular mRNA and induced apoptosis in mammalian cells. MazF-induced apoptosis required proapoptotic BAK and its upstream regulator, the proapoptotic BH3-only protein NBK/BIK, but not BIM, PUMA, or NOXA. Interestingly, in response to MazF induction, NBK/BIK activated BAK by displacing it from anti-apoptotic proteins MCL-1 and BCL-XL that sequester BAK. Furthermore, NBK/BIK- or BAK-deficient cells were resistant to cell death induced by pharmacologic inhibition of translation and by virus-mediated shutoff of protein synthesis. Thus, the BH3-only protein NBK/BIK is the apical regulator of a BAK-dependent apoptotic pathway in response to shutoff of protein synthesis that functions to displace BAK from sequestration by MCL1 and BCL-XL. Although NBK/BIK is dispensable for development, it is the BH3-only protein targeted for inactivation by viruses, suggesting that it plays a role in pathogen/toxin response through apoptosis activation.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3