Defining the impact of β-catenin/Tcf transactivation on epithelial stem cells

Author:

Lowry William E.,Blanpain Cedric,Nowak Jonathan A.,Guasch Geraldine,Lewis Lisa,Fuchs Elaine

Abstract

Wnt signaling has been implicated in stem cell (SC) biology, but little is known about how stabilized β-catenin functions within native SC niches. We address this by defining the impact of β-catenin stabilization on maintenance, proliferation, and lineage commitment of multipotent follicle SCs when in their native niche and in culture. We employ gain of function mutations and inducible loss of function mutations to demonstrate that β-catenin stabilization is essential for promoting the transition between SC quiescence and conversion to proliferating transit amplifying (TA) progeny. We transcriptionally profile purified SCs isolated directly from wild-type and elevated β-catenin follicles in both resting and activated states to uncover the discrete set of genes whose expression in native SCs is dependent upon β-catenin stabilization. Finally, we address the underlying mechanism and show that in the SC niche, Wnt signaling and β-catenin stabilization transiently activate Lef1/Tcf complexes and promote their binding to target genes that promote TA cell conversion and proliferation to form the activated cells of the newly developing hair follicle. We also show that these changes precede subsequent Wnt signals that impact on the TA progeny to specify the differentiation lineages of the follicle.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3