Proton Conductivity of Glycosaminoglycans

Author:

Selberg John,Jia Manping,Rolandi MarcoORCID

Abstract

AbstractProton (H+) conductivity is important in many natural phenomena including oxidative phosphorylation in mitochondria and archea, uncoupling membrane potentials by the antibiotic Gramicidin, and proton actuated bioluminescence in dinoflagellate. In all of these phenomena, the conduction of H+ occurs along chains of hydrogen bonds between water and hydrophilic residues. These chains of hydrogen bonds are also present in many hydrated biopolymers and macromolecule including collagen, keratin, chitosan, and various proteins such as reflectin. All of these materials are also proton conductors. Recently, our group has discovered that the jelly found in the Ampullae of Lorenzini-shark’s electrosensing organs- is the highest naturally occurring proton conducting substance. The jelly has a complex composition, but we attributed the conductivity to the glycosaminoglycan keratan sulfate (KS). Here, we have measured the proton conductivity of hydrated keratan sulfate using PdHx contacts to be 0.50 ± 0.11 mS cm -1- consistent to that of Ampullae of Lorenzini jelly, 2 ± 1 mS cm -1. Proton conductivity, albeit with lower values, is also shared by other glycosaminoglycans with similar chemical structures including dermatan sulfate, chondroitin sulfate A, heparan sulfate, and hyaluronic acid. This observation confirms the structure property relationship between proton conductivity and the chemical structure of biopolymers.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3