CRootBox: A structural-functional modelling framework for root systems

Author:

Schnepf Andrea,Leitner Daniel,Landl Magdalena,Lobet Guillaume,Mai Trung Hieu,Morandage Shehan,Sheng Cheng,Zörner Mirjam,Vanderborght Jan,Vereecken Harry

Abstract

ABSTRACTBackground and AimsRoot architecture development determines the sites in soil where roots provide input of carbon and take up water and solutes. However, root architecture is difficult to determine experimentally when grown in opaque soil. Thus, root architectural models have been widely used and been further developed into functional-structural models that simulate the fate of water and solutes in the soil-root system. We present a root architectural model, CRootBox, as a flexible framework to model architecture and its interactions with static and dynamic soil environments.MethodsCRootBox is a C++ -based root architecture model with Python binding, so that CRootBox can be included via a shared library into any Python code. Output formats include VTP, DGF, RSML and CSV. We further created a database of published root architectural parameters. The capabilities of CRootBox for the unconfined growth of single root systems, as well as the different parameter sets, are highlighted into a freely available web application.Key resultsWe demonstrate the use of CRootBox for 5 different cases (1) free growth of individual root systems (2) growth of root systems in containers as a way to mimic experimental setups, (3), field scale simulation, (4) root growth as affected by heterogeneous, static soil conditions, and (5) coupling CRootBox with Soil Physics with Python code to dynamically compute water flow in soil, root water uptake, and water flow inside roots.ConclusionsIn conclusion, we present a fast and flexible functional-structural root model which is based on state-of-the-art computational science methods. Its aim is to facilitate modelling of root responses to environmental conditions as well as the impact of root on soil. In the future, we plan to extend this approach to the aboveground part of the plant.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3