Brain-to-brain synchrony between students and teachers predicts learning outcomes

Author:

Davidesco Ido,Laurent Emma,Valk Henry,West Tessa,Dikker Suzanne,Milne Catherine,Poeppel David

Abstract

SummaryLittle is known about the brain mechanisms that underpin how humans learn while interacting with one another in ecologically-valid environments (1-3). This is because cognitive neuroscientists typically measure one participant at a time in a highly constrained environment (e.g., inside a brain scanner). In the past few years, researchers have begun comparing brain responses across individuals (4-6) demonstrating that brain-to-brain synchrony can predict subsequent memory retention (7-9). Yet previous research has been constrained to non-interacting individuals. Surprisingly, the one study that was conducted in a group setting found that brain synchrony between students in a classroom predicted how engaged the students were, but not how much information they retained (10). This is unexpected because brain-to-brain synchrony is hypothesized to be driven, at least partially, by shared attention (11, 12), and shared attention has been shown to affect subsequent memory (13). Here we used EEG to simultaneously record brain activity from groups of four students and a teacher in a simulated classroom to investigate whether brain-to-brain synchrony, both between students and between the students and the teacher, can predict learning outcomes (Fig. 1A). We found that brain-to-brain synchrony in the Alpha band (8-12Hz) predicted students’ delayed memory retention. Further, moment-to-moment variation in alpha-band brain-to-brain synchrony discriminated between content that was retained or forgotten. Whereas student-to-student brain synchrony best predicted delayed memory retention at a zero time lag, student-to-teacher brain synchrony best predicted memory retention when adjusting for a ∼200 millisecond lag in the students’ brain activity relative to the teacher’s brain activity. These findings provide key new evidence for the importance of brain data collected simultaneously from groups of individuals in ecologically-valid settings.HighlightsElectroencephalogram (EEG) was concurrently recorded in a simulated classroom from groups of four students and a teacher.Alpha-band (8-12Hz) brain-to-brain synchrony predicted students’ performance in a delayed post-test.Moment-to-moment variation in alpha-band brain-to-brain synchrony indicated what specific information was retained by students.Whereas student-to-student brain synchrony best predicted learning at a zero time lag, student-to-teacher brain synchrony best predicted learning when adjusting for a ∼200 millisecond lag in the students’ brain activity relative to the teacher’s brain activity.

Publisher

Cold Spring Harbor Laboratory

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3