Spring-loaded inverted pendulum goes through two contraction-extension cycles during the single stance phase of walking

Author:

Antoniak Gabriel,Biswas Tirthabir,Cortes Nelson,Sikdar Siddhartha,Chun Chanwoo,Bhandawat Vikas

Abstract

AbstractDespite the overall complexity of legged locomotion, the motion of the center of mass (COM) itself is relatively simple, and can be qualitatively described by simple mechanical models. The spring-loaded inverted pendulum (SLIP) is one such model, and describes both the COM motion and the ground reaction forces (GRFs) during running. Similarly, walking can be modeled by two SLIP-like legs (double SLIP or DSLIP). However, DSLIP has many limitations and is unlikely to serve as a quantitative model for walking. As a first step to obtaining a quantitative model for walking, we explored the ability of SLIP to model the single stance phase of walking across the entire range of walking speeds. We show that SLIP can be employed to quantitatively model the single stance phase except for two exceptions: first, it predicts larger horizontal GRFs than empirically observed. A new model - angular and radial spring-loaded inverted pendulum (ARSLIP) can overcome this deficit. Second, even the single stance phase has active elements, and therefore a quantitative model of locomotion would require active elements. Surprisingly, the leg spring undergoes a contraction-extension-contraction-extension (CECE) during walking; this cycling is partly responsible for the M-shaped GRFs produced during walking. The CECE cycle also lengthens the stance duration allowing the COM to travel passively for a longer time, and decreases the velocity redirection between the beginning and end of a step. A combination of ARSLIP along with active mechanisms during transition from one step to the next is necessary to describe walking.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3