Human POMC processing in vitro and in vivo revealed by quantitative peptidomics

Author:

Kirwan Peter,Kay Richard,Brouwers Bas,Herranz-Perez Vicente,Jura Magdalena,Larraufie Pierre,Pembroke Jason,Bartels Theresa,White Anne,Gribble Fiona,Reimann Frank,Farooqi I. Sadaf,O’Rahilly Stephen,Merkle Florian T.

Abstract

ABSTRACTHuman obesity can result from the aberrant production or processing of proopiomelanocortin (POMC) in hypothalamic neurons, but it is unclear which human POMC-derived peptides are most relevant to body weight regulation. To address this question, we analysed both hypothalamic neurons derived from human pluripotent stem cells (hPSCs) and primary human hypothalamic tissue using quantitative liquid chromatography tandem mass spectroscopy (LC-MS/MS). In both in vitro- and in vivo-derived samples, we found that POMC was processed into β-melanocyte stimulating hormone (β-MSH), whose existence in the human brain has been controversial. β-MSH and desacetyl α-MSH (d-α-MSH) were produced at roughly equimolar concentrations and in vast excess to acetylated α-MSH (5-to 200-fold), suggesting that the importance of both d-α-MSH and β-MSH to human obesity has been underestimated. Since body weight is sensitive to changes in MSH concentration, we asked whether hPSC-derived hypothalamic neurons could provide mechanistic insights into the processing and secretion of MSH peptides. We found that cultured human hypothalamic neurons appropriately trafficked POMC and its derivatives, and robustly (P<0.0001) secreted them when depolarised. Furthermore, the adipocyte-derived hormone leptin significantly (P<0.01) promoted their production of both d-α-MSH and β-MSH. These results establish hPSC-derived hypothalamic neurons as a model system for studying human-specific aspects of POMC processing that might be therapeutically harnessed to treat obesity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3