P. falciparum gametocyte density and infectivity in peripheral blood and skin tissue of naturally infected parasite carriers

Author:

Meibalan ElamaranORCID,Barry Aissata,Gibbins Matthew P.,Awandu Shehu,Meerstein-Kessel Lisette,Achcar Fiona,Bopp Selina,Moxon Christopher,Diarra Amidou,Debe Siaka,Ouédraogo Nicolas,Barry-Some Ines,Badoum Emilie,Fagnima Traoré,Lanke Kjerstin,Gonçalves Bronner P.,Bradley John,Wirth Dyann,Drakeley Chris,Guelbeogo Wamdaogo Moussa,Tiono Alfred B.,Marti MatthiasORCID,Bousema TeunORCID

Abstract

ABSTRACTTransmission of Plasmodium falciparum depends on the presence of mature gametocytes that can be ingested by mosquitoes taking a bloodmeal when feeding on human skin. It has long been hypothesised that skin sequestration contributes to efficient transmission. Although skin sequestration would have major implications for our understanding of transmission biology and the suitability of mosquito feeding methodologies to measure the human infectious reservoir, it has never been formally tested. In two populations of naturally infected gametocyte carriers from Burkina Faso, we assessed transmission potential to mosquitoes and directly quantified male and female gametocytes and asexual parasites in: i) finger prick blood, ii) venous blood, iii) skin biopsies, and in pools of mosquitoes that fed iv) on venous blood or, v) directly on the skin. Whilst more mosquitoes became infected when feeding directly on the skin compared to venous blood, concentrations of gametocytes in the subdermal skin vasculature were identical to that in other blood compartments. Asexual parasite densities, gametocyte densities and sex ratios were identical in the mosquito blood meals taken directly from the skin of parasite carriers and their venous blood.We also observed sparse gametocytes in skin biopsies from legs and arms of gametocyte carriers by microscopy. Taken together, we provide conclusive evidence for the absence of significant skin sequestration of P. falciparum gametocytes. Gametocyte densities in peripheral blood are thus informative for predicting onward transmission potential to mosquitoes. Quantifying this human malaria transmission potential is of pivotal importance for the deployment and monitoring of malaria elimination initiatives.IMPORTANCEOur observations settle a long-standing question in the malaria field and close a major knowledge gap in the parasite cycle. By deploying mosquito feeding experiments and stage-specific molecular and immunofluorescence parasite detection methodologies in two populations of naturally infected parasite carriers, we conclusively reject the hypothesis of gametocyte skin sequestration. Our findings provide novel insights in parasite stage composition in human blood compartments, mosquito bloodmeals and their implications for transmission potential. We demonstrate that gametocyte levels in venous or finger prick blood can be used to predict onward transmission potential to mosquitoes. Our findings thus pave the way for methodologies to quantify the human infectious reservoir based on conventional blood sampling approaches to support the deployment and monitoring of malaria elimination efforts for maximum public health impact.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3