Multiple functions for the catenin family member plakoglobin in cadherin-dependent adhesion, fibronectin matrix assembly and Xenopus gastrulation movements

Author:

Hirsh Glen D.,Dzamba Bette J.,Sonavane Pooja R.,Shook David R.,Allen Claire M.,DeSimone Douglas W.

Abstract

AbstractShaping an embryo requires tissue-scale cell rearrangements known as morphogenetic events. These force-dependent processes require cells to adhere to their neighbors, through cadherin-catenin complexes, and to their extracellular matrix substrates, through integrin-based focal contacts. Integrin receptors are not only important for attachment to the extracellular matrix, but also for its fibrillar assembly. Fibrillogenesis requires actomyosin contractility, regulated in part by cadherin-catenin complexes. One such catenin, plakoglobin, mediates the attachment of actin stress fibers to cadherin cytoplasmic tails through its interactions with actin-binding proteins. In Xenopus gastrulae, plakoglobin has been identified as an essential member in the force-induced collective migration of the mesendoderm tissue. In the current study, we have further characterized the role of plakoglobin in two additional morphogenetic processes, epiboly and convergent extension. Plakoglobin-deficient tadpoles are 40% shorter and gastrulae contain notochords that are 60% wider than stage-matched controls, indicating convergent extension defects. The radially intercalating ectoderm of morphant animal caps is nearly twice as thick as controls. Furthermore, morphant embryos exhibit a failure to assemble a fibronectin matrix at the notochord-somite-boundary or along the blastocoel roof. The loss of the fibronectin matrix, while not due to changes in overall patterning, is a result of a failure to assemble the soluble dimers into long fibrils. The force of attachment to a cadherin or fibronectin substrate is reduced in plakoglobin morphants, indicating defects in adhesion to both cadherin and fibronectin. These data suggest that plakoglobin regulates morphogenesis and fibronectin assembly through cell-cell and cell-matrix adhesion.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3