Dosage-sensitivity of human transcription factor genes

Author:

Ni Zhihua,Zhou Xiao-Yu,Aslam Sidra,Niu Deng-Ke

Abstract

AbstractChanges in the copy number of protein-coding genes would lead to detrimental effects if the consequent changes in protein concentration disrupt essential cellular functions. Large-scale genomic studies have identified thousands of dosage-sensitive genes in human genome. We are interested in the dosage-sensitivity of transcription factor (TF) genes whose products are essential for the growth, division and differentiation of cells by regulating the expression of the genetic information encoded in the genome. We first surveyed the enrichment of human TF genes in four recently curated datasets of dosage-sensitive genes, including the haploinsufficient genes identified by a large-scale genomic study, the haploinsufficient genes predicted by a machine learning approach, the genes with conserved copy number across mammals, and the ohnologs. Then we selected the dosage-sensitive genes that are present in all the four dataset and regarded them as the most reliable dosage-sensitive genes, and the genes that are absent from any one of the four datasets as the most reliable dosage-insensitive genes, and surveyed the enrichments of TFs genes in these two datasets. A large number of TF genes were found to be dosage-insensitive, which is beyond the expectation based on the role of TFs. In spite of this, the likeness of TF genes to be dosage-sensitive were supported by five datasets, with the conserved-copy-number genes as the exception. The nuclear receptors are the only one family of TFs whose dosage-sensitivity was consistently supported by all the six datasets. In addition, we found that TF families with very few members are also more likely to be dosage-sensitive while the largest TF family, C2H2-ZF, are most likely dosage-insensitive. The most extensively studied TFs, p53, are not special in dosage-sensitivity. They are significantly enriched in only three datasets. We also confirmed that dosage-sensitive genes generally have long coding sequences, high expression levels and experienced stronger selective pressure. Our results indicate some TFs function in a dose-dependent manner while some other not. Gene dosage changes in some TF families like nuclear receptor would result in disease phenotypes while the effects of such changes in some TFs like C2H2-ZF would be mild.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3