Probabilistic thresholding of functional connectomes: application to schizophrenia

Author:

Váša František,Bullmore Edward T.,Patel Ameera X.

Abstract

AbstractFunctional connectomes are commonly analysed as sparse graphs, constructed by thresholding cross-correlations between regional neurophysiological signals. Thresholding generally retains the strongest edges (correlations), either by retaining edges surpassing a given absolute weight, or by constraining the edge density. The latter (more widely used) method risks inclusion of false positive edges at high edge densities and exclusion of true positive edges at low edge densities. Here we apply new wavelet-based methods, which enable construction of probabilistically-thresholded graphs controlled for type I error, to a dataset of resting-state fMRI scans of 56 patients with schizophrenia and 71 healthy controls. By thresholding connectomes to fixed edge-specific P value, we found that functional connectomes of patients with schizophrenia were more dysconnected than those of healthy controls, exhibiting a lower edge density and a higher number of (dis)connected components. Furthermore, many participants’ connectomes could not be built up to the fixed edge densities commonly studied in the literature (~5-30%), while controlling for type I error. Additionally, we showed that the topological randomisation previously reported in the schizophrenia literature is likely attributable to “non-significant” edges added when thresholding connectomes to fixed density based on correlation. Finally, by explicitly comparing connectomes thresholded by increasing P value and decreasing correlation, we showed that probabilistically thresholded connectomes show decreased randomness and increased consistency across participants. Our results have implications for future analysis of functional connectivity using graph theory, especially within datasets exhibiting heterogenous distributions of edge weights (correlations), between groups or across participants.

Publisher

Cold Spring Harbor Laboratory

Reference75 articles.

1. Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia;Frontiers in Systems Neuroscience,2010

2. Test-retest reliability of graph metrics of resting state MRI functional brain networks: A review

3. Altered resting state complexity in schizophrenia

4. Toward discovery science of human brain function

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3