Hidden dynamic signatures drive substrate selectivity in the disordered phosphoproteome

Author:

Cho Min-Hyung,Wrabl James O.,Taylor JamesORCID,Hilser Vincent J.ORCID

Abstract

AbstractPhosphorylation sites are hyper-abundant in the disordered proteins of eukaryotes, suggesting that conformational dynamics (or heterogeneity) may play a major role in determining to what extent a kinase interacts with a particular substrate. In biophysical terms, substrate selectivity may be determined not just by the structural and chemical complementarity between the kinase and its protein substrates, but also by the free energy difference between the conformational ensembles that are recognized by the kinase and those that are not. To test this hypothesis, we developed an informatics framework based on statistical thermodynamics, which allows us to probe for dynamic contributions to phosphorylation, as evaluated by the ability to predict Ser/Thr/ Tyr phosphorylation sites in the disordered proteome. Essential to this framework is a decomposition of substrate sequence information into two types: vertical information encoding conserved kinase specificity motifs and horizontal (distributed) information encoding substrate conformational dynamics that are embedded, but often not apparent, within position specific conservation patterns. We find not only that conformational dynamics play a major role, but that they are the dominant contribution to substrate selectivity. In fact, the main substrate classifier distinguishing selectivity is the magnitude of change in compaction of the disordered chain upon phosphorylation. Thus, in addition to providing fundamental insights into the underlying mechanistic consequences of phosphorylation across the entire proteome, our approach provides a novel statistical thermodynamic strategy for partitioning any sequence-based search into contributions from direct chemical and structural complementarity and those from changes in conformational dynamics. Using this framework, we developed a high-performance open-source phosphorylation site predictor, PHOSforUS, which is freely available at https://github.com/bxlab/PHOSforUS.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3