Spike-timing pattern operates as gamma-distribution across cell types, regions and animal species and is essential for naturally-occurring cognitive states

Author:

Li Meng,Xie Kun,Kuang Hui,Liu Jun,Wang Deheng,Fox Grace E.,Wei Wei,Li Xiaojian,Li Yuhui,Zhao Fang,Chen Liang,Shi Zhifeng,Cui He,Mao Ying,Tsien Joe Z.

Abstract

AbstractSpike-timing patterns - crucial for synaptic plasticity and neural computation - are often modeled as Poisson-like random processes, log-normal distribution or gamma-distribution patterns, each with different underlying assumptions that may or may not be biologically true. However, it is not entirely clear whether (and how well) these different models would or would not capture spike-timing statistical patterns across different neurons, regions, animal species and cognitive states. Here, we examine statistical patterns of spike-timing irregularity in 13 different cortical and subcortical regions from mouse, hamster, cat and monkey brains. In contrast to the widely-assumed Poisson or log-normal distribution patterns, we show that spike-timing patterns of various projection neurons-including cortical excitatory principal cells, hippocampal pyramidal cells, inhibitory striatal medium spiny neurons and dopaminergic neurons, as well as fast-spiking interneurons – all invariantly conform to the gamma-distribution model. While higher regularity in spike-timing patterns are observed in a few cases, such as mouse DA neurons and monkey motor cortical neurons, there is no clear tendency in increased firing regularity from the sensory and subcortical neurons to prefrontal or motor cortices, as previously entertained. Moreover, gamma shapes of spike-timing patterns remain robust over various natural cognitive states, such as sleep, awake periods, or during fearful episodic experiences. Interestingly, ketamine-induced general anesthesia or unconsciousness is associated with the breakdown of forebrain spike patterns from a singular gamma distribution into two distinct subtypes of gamma distributions, suggesting the importance of this spike-timing pattern in supporting natural cognitive states. These results suggest that gamma-distribution patterns of spike timing reflect not only a fundamental property conserved across different neurons, regions and animal species, but also an operation crucial for supporting natural cognitive states. Such gamma-distribution-based spike-timing patterns can also have important implications for real-time neural coding and realistic neuromorphic computing.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3