Preparing Fission Yeast for Electron Microscopy

Author:

Giddings Thomas H.,Morphew Mary K.,McIntosh J. Richard

Abstract

Freezing samples while simultaneously subjecting them to a rapid increase in pressure, which inhibits ice crystal formation, is a reliable method for cryofixing fission yeast. The procedure consists simply of harvesting cells and loading them into a high-pressure freezer (HPF), and then operating the device. If equipment for high-pressure freezing is not available, fission yeast can be frozen by plunging a monolayer of cells into a liquid cryogen, usually ethane or propane. Unlike the HPF, where relatively large volumes of cells can be frozen in a single run, plunge freezing requires cells to be dispersed in a layer <20 µm thick. Unless frozen cells are to be imaged in the vitreous state, they must be fixed, dehydrated, and embedded for subsequent study by transmission electron microscopy; warming frozen cells without fixation badly damages cell structure. Fixation is best accomplished by freeze-substitution, a process in which frozen water is removed from samples by a water-miscible solvent that is liquid at a temperature low enough to prevent the cellular water from recrystallizing. Low concentrations of chemical fixatives and stains are generally added to this solvent such that they permeate the cells as the water is replaced. The activity of these additives is quite limited at the low temperatures required for minimizing ice crystal formation, but they are in the right place to react effectively as the cells warm up. Step-by-step protocols for HPF, plunge freezing, and freeze-substitution are provided here.

Publisher

Cold Spring Harbor Laboratory

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3