Synchronizing Progression of Schizosaccharomyces pombe Cells from Prophase through Mitosis and into S Phase with nda3-KM311 Arrest Release

Author:

Hagan Iain M.,Grallert Agnes,Simanis Viesturs

Abstract

Here, we describe how the rapid reversibility of the nda3-KM311 cold-sensitive β-tubulin mutation was optimized by Mitsuhiro Yanagida’s laboratory to synchronize mitotic progression in an entire cell population. The inability to form microtubules following the loss of β-tubulin function at 20°C triggers the spindle assembly checkpoint, which arrests mitotic progression. Restoration of β-tubulin function by rewarming to 30°C (or higher) releases the arrest, generating a highly synchronous progression through mitosis. The viability of nda3-KM311 strains at 30°C makes it feasible to generate double mutants between nda3-KM311 and any temperature-sensitive mutant that can also grow at 30°C. These double mutants can be used in reciprocal shift analyses, in which cold-induced early mitotic arrest is relieved by a shift to 36°C, which then inactivates the product of the second mutant gene. The addition of microtubule depolymerizing drugs before the return to 36°C will maintain checkpoint signaling at 36°C transiently, permitting analysis of the impact of temperature-sensitive mutations on checkpoint function. Silencing the checkpoint of nda3-KM311-arrested cells at 20°C through chemical inhibition of aurora kinase is a powerful way to study checkpoint recovery pathways and mitotic exit without anaphase.

Publisher

Cold Spring Harbor Laboratory

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3