A Robust and Reproducible Method to Study Neurorepair after Stab Injury in the African Turquoise Killifish Telencephalon

Author:

Mariën Valerie,Arckens Lutgarde,Van houcke Jolien

Abstract

The aging population (people >60 yr old) is steadily increasing worldwide, resulting in an increased prevalence of age-related neurodegenerative diseases. Despite intensive research efforts in the past decades, there are still no therapies available to stop, cure, or prevent these diseases. Induction of successful neuroregeneration (i.e., the production of new neurons that can functionally integrate into the existing neural circuitry) could represent a therapy to replace neurons lost by injury or disease in the aged central nervous system. The African turquoise killifish, with its particularly short life span, has emerged as a useful model to study how aging influences neuroregeneration. Here, we describe a robust and reproducible stab-injury protocol to study regeneration in the telencephalon of the African turquoise killifish. After the injury, newborn cells are traced by conducting a BrdU pulse-chase experiment. To identify newborn neurons, a double immunohistochemical staining for BrdU and HuCD is carried out. Techniques such as bromodeoxyuridine (BrdU) labeling, intracardial perfusion, cryosectioning, and immunofluorescence staining are described as separate sections.

Publisher

Cold Spring Harbor Laboratory

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3