Multi-Position Photoactivation and Multi-Time Acquisition for Large-Scale Cell Tracing in Avian Embryos

Author:

Steen Joseph,Morrison Jason A.,Kulesa Paul M.

Abstract

INTRODUCTIONVertebrate development is a complex orchestration of cell and tissue movements. Tracing individual cell positions can rapidly become a large-scale problem because cell numbers often grow exponentially in the early embryo. A typical approach consists of fluorescently marking small numbers of cells within a large number of embryos, followed by comprehensive three-dimensional static or time-lapse imaging to map cell positions. However, for large-scale cell tracing, such as during organogenesis, the time, effort, and expense of this approach can be limiting. The multi-position acquisition method can be used to capture more than one location on a microscope stage and allow for multi-specimen imaging. When combined with photoactivation cell labeling, a tool for selective cell marking using laser excitation, multi-position imaging offers a powerful tool for rapid data acquisition. This protocol describes the technique and demonstrates its use to map cell movements in the chick spinal cord, using slice culture explants. The details of multiple slice culture preparation, multi-position photoactivation, and multi-time acquisition are described. These events are coordinated by setting up blocks of microscope instructions that execute sequentially. This method significantly decreases the time, effort, microscopy, and embryo costs by a factor of the number of specimens imaged per session, typically six.

Publisher

Cold Spring Harbor Laboratory

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3