PSL-Recommender: Protein Subcellular Localization Prediction using Recommender System

Author:

Jamali RuhollahORCID,Eslahchi ChangizORCID,Jahangiri-Tazehkand SoheilORCID

Abstract

AbstractIdentifying a protein’s subcellular location is of great interest for understanding its function and behavior within the cell. In the last decade, many computational approaches have been proposed as a surrogate for expensive and inefficient wet-lab methods that are used for protein subcellular localization. Yet, there is still much room for improving the prediction accuracy of these methods.PSL-Recommender (Protein subcellular location recommender) is a method that employs neighborhood regularized logistic matrix factorization to build a recommender system for protein subcellular localization. The effectiveness of PSL-Recommender method is benchmarked on one human and three animals datasets. The results indicate that the PSL-Recommender significantly outperforms state-of-the-art methods, improving the previous best method up to 31% in F1 – mean, up to 28% in ACC, and up to 47% in AVG. The source of datasets and codes are available at:https://github.com/RJamali/PSL-Recommender

Publisher

Cold Spring Harbor Laboratory

Reference51 articles.

1. Better prediction of sub-cellular localization by combining evolutionary and structural information;Proteins: Structure, Function, and Bioinformatics,2003

2. Hum-mploc 3.0: prediction enhancement of human protein subcellular localization through modeling the hidden correlations of gene ontology and functional domain features;Bioinformatics,2016

3. MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition

4. WoLF PSORT: protein localization predictor

5. SherLoc2: A High-Accuracy Hybrid Method for Predicting Subcellular Localization of Proteins

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3