Abstract
AbstractGenome instability is a hallmark of aging and contributes to age-related disorders such as progeria, cancer, and Alzheimer’s disease. In particular, nuclear quality control mechanisms and cell cycle checkpoints have generally been studied in young cells and animals where they function optimally, and where genomic instability is low. Here, we use single cell imaging to study the consequences of increased genomic instability during aging, and identify striking age-associated genome missegregation events. During these events the majority of mother cell chromatin, and often both spindle poles, are mistakenly sent to the daughter cell. This breakdown in mitotic fidelity is accompanied by a transient cell cycle arrest that can persist for many hours, as cells engage a retrograde transport mechanism to return chromosomes to the mother cell. The repetitive ribosomal DNA (rDNA) has been previously identified as being highly vulnerable to age-related replication stress and genomic instability, and we present several lines of evidence supporting a model whereby expansion of rDNA during aging results in nucleolar breakdown and competition for limited nucleosomes, thereby increasing risk of catastrophic genome missegregation.
Publisher
Cold Spring Harbor Laboratory