Structural elements that modulate the substrate specificity of plant purple acid phosphatases: avenues for improved phosphorus acquisition in crops

Author:

Feder Daniel,McGeary Ross P.,Mitić Natasa,Lonhienne Thierry,Furtado Agnelo,Schulz Benjamin L.ORCID,Henry Robert J.,Schmidt Susanne,Guddat Luke W.,Schenk Gerhard

Abstract

AbstractPhosphate acquisition by plants is an essential process that is directly implicated in the optimization of crop yields. Purple acid phosphatases (PAPs) are ubiquitous metalloenzymes, which catalyze the hydrolysis of a wide range of phosphate esters and anhydrides. While some plant PAPs display a preference for ATP as the substrate, others are efficient in hydrolyzing phytate or 2-phosphoenolpyruvate (PEP). PAP from red kidney bean (rkbPAP) is an efficient ATP- and ADPase, but has no activity towards phytate. The crystal structure of this enzyme in complex with an ATP analogue (to 2.20 Å resolution) provides insight into the amino acid residues that play an essential role in binding this substrate. Homology modelling was used to generate three-dimensional structures for the active sites of PAPs from tobacco (NtPAP) andArabidopsis thaliana(AtPAP12 and AtPAP26) that are efficient in hydrolyzing phytate and PEP as substrates, respectively. In combination with substrate docking simulations and a phylogenetic analysis of 49 plant PAP sequences (including the first PAP sequences reported fromEucalyptus), several active site residues were identified that are important in defining the substrate specificities of plant PAPs. These results may inform bioengineering studies aimed at identifying and incorporating suitable plant PAP genes into crops to improve phosphorus use efficiency. Organic phosphorus sources increasingly supplement or replace inorganic fertilizer, and efficient phosphorus use of crops will lower the environmental footprint of agriculture while enhancing food production.

Publisher

Cold Spring Harbor Laboratory

Reference72 articles.

1. Phosphate, phytate and phytases in plants: from fundamental knowledge gained in Arabidopsis to potential biotechnological applications in wheat

2. G. Anderson , Assessing organic phosphorus in soils, in: Role Phosphorus Agric. Khasawneh, F.E. ; Sample, E.C. ; Kamprath, E.J. Ed. Am. Soc. Agron., Madison, WI, 1980: pp. 411–431.

3. Soil Organic Phosphorus

4. DNA Is Taken Up by Root Hairs and Pollen, and Stimulates Root and Pollen Tube Growth

5. Phytates in Legumes and Cereals

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3