Abstract
SynopsisBackgroundNext-generation sequencing methods have broad application in addressing increasing antibiotic resistance, with identification of antibiotic resistance genes (ARGs) having direct clinical relevance.ObjectivesHere, we describe the appearance of synthetic vector-associated ARGs in major public next-generation sequence data sets and assemblies, including in environmental samples and high priority pathogenic microorganisms.MethodsA search of selected databases – the National Centre for Biotechnology Information (NCBI) nucleotide collection, NCBI whole genome shotgun sequence contigs and literature-associated European Nucleotide Archive (ENA) datasets, was carried out using sequences characteristic of pUC-family synthetic vectors as a query in BLASTn. Identified hits were confirmed as being of synthetic origin, and further explored through alignment and comparison to primary read sets.ResultsSynthetic vectors are attributed to a range of organisms in each of the NCBI databases searched, including examples belonging to each Kingdom of life. These synthetic vectors are associated with various ARGs, primarily those encoding resistance to beta-lactam antibiotics and aminoglycosides. Synthetic vector associated ARGs are also observed in multiple environmental meta-transcriptome datasets, as shown through analysis of associated ENA primary reads, and are proposed to have led to incorrect statements being made in the literature on the abundance of ARGs.ConclusionsAppearance of synthetic vector-associated ARGs can confound the study of antimicrobial resistance in varied settings, and may have clinical implications in the nearfuture.
Publisher
Cold Spring Harbor Laboratory